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Compounds designed to bind more than one target can provide a therapeutic benefit relative to highly target-
selective ligands. The physicochemical properties of designed multiple ligands were found to be less druglike
than those for preclinical compounds in general. These properties are controlled by the superfamily to which
the targets belong and the lead discovery strategy that was followed. The properties for peptide G-protein-
coupled receptor (GPCR) ligands were the least favorable for oral delivery, whereas transporter, monoamine
GPCR, and oxidase ligands were the most druglike. The lead discovery strategy, framework combination or
screening, exerts a profound influence on the property values. Combining the frameworks from two selective
ligands often results in large, complex dual ligands, but druglike ligands can be achieved if the degree of
framework overlap is maximized and the size of the selective ligands minimized. For some target
combinations, a screening approach may provide a route to smaller, less complex leads.

Introduction

Despite record investment in drug discovery research by
private and public institutions over the past few decades, many
diseases remain inadequately treated. Recently, there has been
a growing interest in the design of ligands that act specifically
on multiple targets (“targeted polypharmacology”) with the aim
of enhancing efficacy or to improving safety relative to drugs
that address only a single target. Compounds that are rationally
designed with a well-defined multitarget profile have been
classified as designed multiple ligands (DMLs) to distinguish
them from nonselective (or “dirty”) drugs that are discovered
serendipitously and that often possess off-target activities
irrelevant to the disease and that frequently give rise to
deleterious side effects.1,2 DMLs are of particular relevance to
highly complex diseases, such as central nervous system
disorders and cancer, where many reductionist single-target
approaches have proved to be largely fruitless.3,4

It is fair to say that the field of designing ligands that possess
predefined, well-balanced multitarget profiles is still in its
infancy. Nonetheless, we felt that it would still be instructive
to analyze the examples that have been published thus far to
understand which factors have most heavily influenced success
or lack of success in the area. It is well-known that physico-
chemical properties can have profound effects on the in vivo
behavior of drugs, and these have been expressed in recent years
in a number of seminal papers.5-7 The current paper examines
how the physicochemical properties of multiple ligands depend
on both the lead discovery strategy that is followed and the
protein superfamily to which the targets belong.

A database of 281 multiple ligands reported in the primary
medicinal chemistry literature was compiled. For 264 of these
ligands, the structures of the starting compound(s) were also
available enabling an analysis of the changes in the physico-
chemical properties that occurred during the optimization
process. The full database was subdivided into subsets on the
basis of the target family enabling an analysis of the influence
of target family on the properties (Figure 1).

We identified two distinctly different lead discovery strategies
through which the DMLs present in the database were derived

(Figure 2). The most common strategy was to start with a single
molecule that, in most cases, had good activity at one of the
targets of interest and at least some minimal activity at the other
target(s). The starting compound was usually obtained via
focused, or less commonly random, screening. During optimiza-
tion, analogues were made in order to balance the desired
activities at an appropriate level and, if necessary, to remove
any undesired cross-reactivity. The second design strategy
started with two compounds, one of which bound with high
selectively to one of the targets and the other with high
selectively to the other target. In this case, the first goal was to
incorporate both activities into a single lead molecule by linking,
fusing, or merging the frameworks of the two selective
molecules (Figure 2). This is a knowledge-based combination
strategy that effectively leverages SAR knowledge from histori-
cal selective ligand projects.

For each optimized compound from the full DML set, the
main target family subsets and the discovery strategy subsets,
six physicochemical properties were calculated: molecular
weight (MW), cLogP, polar surface area (PSA), the number of
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Figure 1. The main target families present in the DML database are
also those of greatest interest in drug discovery. The number shown is
the number of optimized compounds for each subgroup with these target
families representing 70% of the full database. Where a single family
is given, all targets in the combination belong to this same family.
Where two families are given, there is at least one target in the
combination from each family.

4961J. Med. Chem.2006,49, 4961-4970

10.1021/jm0603015 CCC: $33.50 © 2006 American Chemical Society
Published on Web 07/15/2006



hydrogen bond acceptors (HBA), the number of hydrogen bond
donors (HBD), and the number of rotatable bonds (RB).

Results

(A) Target Family Based Property Analysis. Molecular
Weight. The median MW for the full set of optimized
compounds was 450 (mean 503), and the median increase in
MW during optimization was 64 (mean 110) (Table 1). We
found considerable differences between the 11 target family
subsets with the median ranging from 636 for peptide G-protein-
coupled receptors (GPCRs) to 307 for transporters. The increase
during optimization ranged from an increase of 99 for the
GPCR/oxidase ligands to 24 for the oxidase ligands.

The target family subsets were divided into clusters by
determining whether the median MWs of the optimized
compounds showed statistically significant differences from each
other (Figure 3).8 In all cases, the target families within the
same cluster were not significantly different from each other
and in most cases were significantly different from the target
families in the clusters above and below.9 The uppermost cluster
contained just one target family, the peptide GPCRs, with by
far the highest median MW. This was followed by a large cluster
containing the optimized compounds for proteases, nuclear
receptors, GPCR/oxidases, the full set of GPCRs, and kinases.
Two further clusters were identified, the first containing the
monoamine GPCR and GPCR/transporter ligands, and the
second containing the oxidase and transporter ligands with the
lowest median MWs of all.

The median MW for the DMLs (450) was considerably higher
than the median MW for oral drugs of 322 reported by Vieth et

al.10 However, since the DMLs were almost exclusively
preclinical compounds, it was more relevant to make compari-
sons with other databases of preclinical compounds. Vieth et
al. reported a median of 415 (mean of 448) for preclinical
compounds, so clearly DMLs as a group appear to be consider-
ably larger. To make a more detailed comparison across the
individual target families, we compared the DML MWs with
the MWs for those same target families present in a proprietary
database (called SCOPE) of preclinical compounds reported in
the medicinal chemistry literature.11 The median MW during
optimization for the full set of DMLs (450) was higher than
that for the SCOPE ligands (422). The median MW increase
during optimization for the full set of DMLs, 64, was broadly
similar to the increases of 69 and 42 reported by Oprea6 and
Hann,7 respectively, for a series of lead-drug pairs. Again, it
was felt that it would be more relevant to draw a comparison
with the predominantly preclinical compounds in the SCOPE
database. For the SCOPE ligands, the median MW increase was
30, which was significantly lower than that for the full DML
set (64).

The median MWs were higher for most of the DML target
families compared to the comparable SCOPE target families
except for oxidases, proteases, and transporters where there was
no statistically significant difference between the two sets. The
largest difference between the two sets was found for the full
set of GPCRs, the peptide GPCRs, and the kinases. These
differences were due to a combination of the larger size of the
starting compounds and a larger increase during optimization
for the DMLs.

Figure 2. There are two principal strategies for generating ligands with multiple activity, represented by the blue color for the intensity of the first
activity and yellow for the second activity. A single starting compound (1SC) approach may be followed with such compounds obtained via
focused or random screening. Although already possessing multiple activity, analoging is required to balance the activities. Alternatively, a more
rational, knowledge-based strategy may be followed whereby the frameworks from two selective starting compounds (2SC) may be linked, fused,
or merged.

Table 1. Molecular Weight (MW) Dataa

target family
subset

SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e]

Wilcoxon
p valuef

SCOPE OCc

median (mean)

median
difference

from SCOPE
setg

p value
(difference

from SCOPE
set)h

full DML set 377 (398) [264] 450 (503) [281] 64 (110) [264] 0 422 (435) 37 0
GPCRs (all) 415 (455) [57] 549.5 (573) [58] 72 (121) [57] 0 433 (440) 116 0
GPCRs (monoamine) 360 (324) [12] 397 (410) [13] 73 (87) [12] 0.009 375 (377) 35 0.1265
GPCRs (peptide) 512 (509) [31] 636 (638) [31] 72 (129) [31] 0 510 (513) 123 0
GPCR/oxidases 400 (395) [16] 478 (502) [16] 99 (107) [16] 0.014
GPCR/transporters 358 (356) [22] 426 (419) [22] 45 (63) [22] 0
kinases 381 (411) [12] 523 (503) [16] 92 (103) [12] 0.004 392 (406) 107 0
nuclear receptors 383 (418) [15] 463 (482) [18] 55 (63) [15] 0.007 421 (431) 47 0.0339
oxidases 358 (346) [17] 352 (364) [17] 24 (17) [17] 0.118 357 (355) 2 0.9206
proteases 420 (468) [36] 454 (617) [42] 37 (180) [36] 0 467 (468) -5 0.7862
transporters 297 (307) [9] 307 (331) [9] 28 (24) [9] 0.076 325 (335) -5 0.8757

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
data points.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.
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cLogP.The median logP value for the full set of optimized
compounds of the 281 DMLs was 4.4 (mean 4.2), and the
median change in cLogP during optimization was+0.7 (mean
+0.7) (Table 2). There were considerable differences between
target families, with nuclear receptor ligands being the most
lipophilic by far (median 6.9) and protease DMLs the least
lipophilic. The largest increase in lipophilicity during optimiza-
tion was shown by the monoamine GPCR ligands, whereas
oxidase, kinase, and transporter ligands showed no change.

The target families were clustered in a similar manner as for
the MW above (Figure 3).9 The nuclear receptor ligands had
significant higher cLogP values than any of the other target
families, but this finding has to be qualified by the fact that all
the examples were peroxisome proliferator-activated receptor
(PPAR) ligands. Next came a cluster containing the full set of
GPCRs, GPCR/transporters, transporters, GPCR/oxidases, and
oxidases. Occupying the lowest lipophilicity cluster were the
protease and monoamine GPCR ligands.

When the DML data were compared with the SCOPE data,
it was apparent that cLogP was higher for DMLs by 0.4. This
was due to a much larger increase in cLogP during optimization,
since the lipophilicity was no different for the starting com-
pounds. For the peptide GPCR, nuclear receptor, and kinase
subsets, the DMLs were significantly more lipophilic.

PSA. The median PSA of the full set of DML optimized
compounds was 67 Å2, with a median increase of 9 during
optimization (Table 3). The ligands with the highest PSA values
were those for the proteases (87 Å2), and once again, the
transporter ligands had the lowest values (19 Å2). There was a
significant increase in PSA for the full set of GPCRs, peptide
GPCR, kinase, nuclear receptor, and GPCR/oxidase families.
Interestingly, the high PSA values for the protease optimized
compounds were due entirely to the high PSA of the starting
compounds and there was no evidence for an increase during
optimization.

When the target families were compared directly with each
other, there was no significant difference between the peptide
GPCR, protease, kinase, and GPCR/oxidase families, so these
formed the uppermost cluster (Figure 3).9 The monoamine
GPCR, GPCR/transporter, and oxidase families were equivalent
in terms of PSA but had lower values than the nuclear receptor
and full set of GPCRs subsets. The transporters had a significant
lower PSA than any of the other subsets.

The median PSA for the DMLs was higher than that for the
SCOPE ligands by 9 Å, and this was predominantly due to a
larger increase during optimization.

HBA. The analysis showed that the DMLs possessed on
average five HBAs and that the median increase was one HBA

Figure 3. Classification of target families on the basis of six physicochemical properties for their optimized ligands: MW, cLogP, polar surface
area (PSA), the number of hydrogen bond acceptors (HBA), the number of hydrogen bond donors (HBD), and the number of rotatable bonds (RB).

Table 2. cLogP Dataa

target family
subset

SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e]

Wilcoxon
p valuef

SCOPE OCc

median (mean)

median
difference

from SCOPE
setg

p value
(difference

from SCOPE
set)h

full DML set 3.5 (3.6) [264] 4.4 (4.2) [281] 0.7 (0.7) [264] 0 4 (4) 0.3 0.0425
GPCRs (all) 4.4 (4.1) [57] 4.8 (4.8) [58] 0.9 (0.7) [57] 0.001 4.4 (4.3) 0.4 0.1149
GPCRs (monoamine) 2.55 (2.6) [12] 3.4 (3.6) [13] 1.35 (1.1) [12] 0.013 3.8 (3.7) -0.1 0.6557
GPCRs (peptide) 5.1 (5) [31] 5.7 (5.6) [31] 0.7 (0.6) [31] 0.086 5 (5) 0.6 0.0556
GPCR/oxidases 4.5 (4.1) [16] 4.8 (4.9) [16] 0.6 (0.9) [16] 0.074
GPCR/transporters 3.65 (3.7) [22] 4.6 (4.5) [22] 0.65 (0.9) [22] 0.007
kinases 4.8 (4.7) [12] 4.85 (4.4) [16] -0.25-0.1) [12] 0.969 3.8 (3.5) 0.9 0.0417
nuclear receptors 6.2 (6) [15] 6.9 (6.9) [18] 0.7 (1.1) [15] 0.065 5.1 (5.3) 1.7 0.0004
oxidases 4.6 (4.7) [17] 4.5 (4.3) [17] -0.5 (-0.4) [17] 0.185 4.2 (4.2) 0.2 0.7459
proteases 2.5 (2.2) [36] 3.05 (3.2) [42] 0.9 (1) [36] 0.004 3.2 (3) 0.2 0.4454
transporters 4.3 (4.1) [9] 4.2 (4.1) [9] -0.3 (0.1) [9] 0.767 3.7 (4) 0.4 0.4206

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
datapoints.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.
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(Table 4). During optimization, the number of HBAs increased
significantly for five subsets, the full set of GPCRs, peptide
GPCR, nuclear receptor, kinase, and GPCR/oxidase ligands.
There was no statistically significant difference between the
peptide GPCRs, kinases, proteases, GPCR/oxidases, nuclear
receptors, and the full set of GPCRs, so these can be regarded
as constituting the uppermost cluster.9 Once more, the trans-
porter ligands had a uniquely low median value for the number
of acceptors (two). The number of HBAs for the DMLs was
higher than for the SCOPE ligands, and this was found to be
due to a higher increase for the DMLs during optimization. This

trend was maintained with significance for four of the subsets,
the full set of GPCRs, kinases, nuclear receptors, and peptide
GPCRs.

HBD. The protease optimized compounds had the highest
number of donors (median 3) (Table 5). Comparison of the
protease subset with the other subsets showed that this target
family constituted a statistically distinct upper cluster.9 Below
came the GPCR/oxidase, oxidase, and kinase subsets with the
remaining target families constituting the lowest cluster (Figure
3). There was no statistically significant increase in the number
of HBDs for any of the individual target families. Monoamine

Table 3. Polar Surface Area (PSA) Dataa

target family
subset

SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e]

Wilcoxon
p valuef

SCOPE OCc

median (mean)

median
difference

from SCOPE
setg

p value
(difference

from SCOPE
set)h

full DML set 54 (60) [264] 67 (80) [281] 9 (21) [264] 0 58 (63) 9 0
GPCRs (all) 49 (53) [57] 65 (74) [58] 10 (21) [57] 0 51 (56) 12. 0.0034
GPCRs (monoamine) 30 (33) [12] 35 (42) [13] 2 (9) [12] 0.139 41 (43) -1 0.8018
GPCRs (peptide) 56 (58) [31] 79 (83) [31] 13 (24) [31] 0 62 (65) 13 0.0139
GPCR/oxidases 62 (61) [16] 75 (77) [16] 13 (16) [16] 0.008
GPCR/transporters 40 (41) [22] 42 (46) [22] 4 (4) [22] 0.173
kinases 62 (55) [12] 75 (78) [16] 16 (26) [12] 0.006 65 (71) 10 0.036
nuclear receptors 58 (53) [15] 62 (65) [18] 4 (12) [15] 0.015 52 (54) 12 0.0235
oxidases 42 (49) [17] 49 (52) [17] 0 (3) [17] 0.534 43 (46) 6 0.2673
proteases 79 (100) [36] 87 (136) [42] 0 (46) [36] 0.028 89 (90) -5 0.3403
transporters 19 (21) [9] 19 (24) [9] 0 (3) [9] 0.834 22 (28) -1 0.7903

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
data points.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.

Table 4. Hydrogen Bond Acceptor (HBA) Dataa

target family
subset

SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e]

Wilcoxon
p valuef

SCOPE OCc

median (mean)

median
difference

from SCOPE
setg

p value
(difference

from SCOPE
set)h

full DML set 4 (4.4) [264] 5 (5.9) [281] 1 (1.6) [264] 0 4 (4.4) 1 0
GPCRs (all) 4 (4.1) [57] 5 (5.6) [58] 1 (1.5) [57] 0 4 (4.2) 1 0
GPCRs (monoamine) 2.5 (2.7) [12] 3 (3.3) [13] 0.5 (0.6) [12] 0.063 3 (3.4) 0 0.9632
GPCRs (peptide) 5 (4.5) [31] 6 (6.3) [31] 1 (1.8) [31] 0 5 (4.8) 1 0.0005
GPCR/oxidases 4 (4.3) [16] 5 (5.7) [16] 1 (1.3) [16] 0.014
GPCR/transporters 3 (3.3) [22] 3 (3.7) [22] 0 (0.4) [22] 0.069
kinases 4.5 (4.4) [12] 6 (5.7) [16] 1.5 (1.5) [12] 0.025 4 (4.6) 1 0.0036
nuclear receptors 5 (4.5) [15] 5 (5.6) [18] 1 (1.2) [15] 0.009 3 (3.8) 2 0.0002
oxidases 3 (3.2) [17] 3 (3.5) [17] 0 (0.3) [17] 0.327 3 (3.3) 0 0.4851
proteases 4 (6.8) [36] 5 (9.6) [42] 0 (3.6) [36] 0.032 5 (5.4) 0 0.2594
transporters 2 (2.3) [9] 2 (2.2) [9] 0 (-0.1) [9] 0.855 3 (2.6) 0 0.3897

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
datapoints.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.

Table 5. Hydrogen Bond Donor (HBD) Dataa

target family
subset

SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e]

Wilcoxon
p valuef

SCOPE OCc

median (mean)

median
difference

from SCOPE
setg

p value
(difference

from SCOPE
set)h

full DML set 2 (4.3) [264] 2 (2.2) [281] 0 (-2.1) [264] 0.139 1 (1.9) 0 0.0227
GPCRs (all) 1 (4) [57] 1 (1.9) [58] 0 (-2.1) [57] 0.915 1 (1.5) 0 0.6734
GPCRs (monoamine) 1.75 (7.6) [12] 1 (1.1) [13] -0.75 (-6.4) [12] 0.025 1 (1.2) 0 0.8253
GPCRs (peptide) 1 (1.5) [31] 1 (2) [31] 0 (0.6) [31] 0.104 1 (1.7) 0 0.9358
GPCR/oxidases 1.5 (1.7) [16] 2 (1.8) [16] 0 (0.1) [16] 0.683
GPCR/transporters 2 (1.7) [22] 2 (1.5) [22] 0 (-0.2) [22] 0.532
kinases 2 (12.1) [12] 2 (2.1) [16] 0 (-9.9) [12] 0.5 2 (2.6) 0 0.2177
nuclear receptors 1 (7.4) [15] 1 (1.1) [18] 0 (-6.3) [15] 0.225 1 (1.2) 0 0.7603
oxidases 1.5 (1.7) [17] 2 (1.8) [17] 0 (0.1) [17] 0.838 1 (1) 1 0.0054
proteases 3 (7.4) [36] 3 (4.1) [42] 0 (-3.1) [36] 0.327 3 (3.3) 0 0.7535
transporters 1 (0.7) [9] 1 (1) [9] 0 (0.3) [9] 0.181 1 (0.9) 0 0.5163

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
data points.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.
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GPCRs showed a statistically significant decrease of-0.75
according to the Wilcoxon method. There was no statistically
significant difference in the number of HBDs between the DML
and SCOPE target family subsets except in the case of the
oxidase DMLs, for which there was a higher number of donors
than the equivalent SCOPE target family.

RBs. The full set of DML optimized compounds contained
a median of 8 rotatable bonds, and there was a substantial
increase during optimization (median 1; mean 2.5) (Table 6).
Statistical clustering gave four groups with peptide GPCRs,
GPCR/oxidases, nuclear receptors, and full set of GPCRs ligands
having the highest number of RBs (Figure 3).9 The second
cluster contained the protease and kinase, and the third cluster
contained the monoamine GPCR, transporter, and GPCR/
transporter ligands. The oxidases had the most rigid ligands of
all. The highest increase in the flexibility of the ligands during
optimization was observed for the peptide GPCR and GPCR/
oxidase subsets.

There was a marked difference between the numbers of RBs
typically found in the SCOPE ligands compared to the DMLs.
This difference for the full set was 2 RBs, and this was due to
both a higher number in the starting compounds and a higher
increase during optimization. There was an increase of 3 RBs
for the full set of GPCRs and the peptide GPCR subset

compared to the SCOPE ligands. For the nuclear receptors, the
difference was very high (6 RBs), although again this might be
a PPAR specific effect.

(B) Discovery Strategy-Based Property Analysis.The
median and mean MWs for the two starting compound (2SC)
set, 471 and 599, respectively, were higher than those of the
one starting compound (1SC) set, 443 and 465, respectively
(Table 7). For both the 1SC and 2SC scenarios, there was a
significant increase in MW during optimization. The magnitude
of this increase was much higher for the 2SC set with a median
increase of 153. Interestingly, the median MW of the starting
compounds was significantly lower for the 2SC set, 328,
compared to the 1SC set, 393. Thus, the higher MW for the
2SC set was entirely dictated by the higher MW change during
optimization.

The median cLogP for the optimized compounds for the 2SC
set, 3.6, was roughly an order of magnitude lower than that for
the 1SC set, 4.6. Similarly, the lipophilicities of the optimized
compounds were also lower for the 2SC set with a median of
2.8. There was a statistically significant increase in cLogP for
the 1SC and 2SC sets of 1 and 0.5, respectively.

The median PSA for the optimized compounds from the 2SC
set, 78, was significantly higher than those from the 1SC set,
62. There was, however, little difference in the median values

Table 6. Rotatable Bond (RB) Dataa

target family
subset

SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e]

Wilcoxon
p valuef

SCOPE OCc

median (mean)

median
difference

from SCOPE
setg

p value
(difference

from SCOPE
set)h

full DML set 6 (6.6) [264] 8 (9) [281] 1 (2.5) [264] 0 6 (6.7) 2 0
GPCRs (all) 7 (6.9) [57] 9 (9.5) [58] 1.5 (2.7) [57] 0 6 (6.6) 3 0
GPCRs (monoamine) 5 (5.2) [12] 6 (6.6) [13] 1.25 (1.5) [12] 0.033 5 (5.2) 1 0.0557
GPCRs (peptide) 8 (7.5) [31] 10 (10.4) [31] 1 (2.9) [31] 0 7 (7.9) 3 0.0003
GPCR/oxidases 7 (8) [16] 10 (10.6) [16] 2.5 (2.6) [16] 0.028
GPCR/transporters 5.25 (5.6) [22] 6 (5.9) [22] 0 (0.3) [22] 0.594
kinases 5 (6.1) [12] 7 (8.2) [16] 1 (1.8) [12] 0.059 5 (5.5) 2 0.0005
nuclear receptors 10 (9.3) [15] 10 (10.4) [18] 1 (1.3) [15] 0.023 4 (5.3) 6 0
oxidases 4 (4.4) [17] 3 (4.3) [17] 0 (-0.1) [17] 0.859 4 (4.2) 0 0.7696
proteases 7 (8.7) [36] 7.5 (13.3) [42] 1 (5.5) [36] 0.012 8 (8.2) 1 0.3322
transporters 6 (5.4) [9] 6 (5.4) [9] 0 (0) [9] 1 3 (4.5) 1 0.197

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
datapoints.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.

Table 7. Physicochemical Property Data for the Two Starting Compound Subsetsa

subset
SCb median
(mean) [N e]

OCc median
(mean) [N e]

PCd median
(mean) [N e] p valuef

median
difference

between OCsg

p value
(difference

between OCs)h

median
difference

between PCsg

p value
(difference

between PCs)h

MW
2SC set 328 (365) [85] 471 (599) [85] 153 (234) [85] 0 40 0.0172 121 0
1SC set 393 (413) [179] 443 (465) [179] 38 (51) [179] 0

cLogP
2SC set 2.8 (2.6) [85] 3.6 (3.5) [85] 1 (0.9) [85] 0 -1.0 0.0006 0.4 0.0576
1SC set 4.1 (4) [179] 4.6 (4.6) [179] 0.5 (0.5) [179] 0

PSA
2SC set 53 (65) [85] 78 (114) [85] 26 (50) [85] 0 19 0 23 0
1SC set 55 (57) [179] 62 (65) [179] 1 (8) [179] 0

HBA
2SC set 4 (4.8) [85] 6 (8.5) [85] 2 (3.7) [85] 0 1 0.0001 1.5 0
1SC set 4 (4.1) [179] 5 (4.7) [179] 0 (0.6) [179] 0

HBD
2SC set 1.5 (3.1) [85] 2 (2.9) [85] 0.5 (-0.2) [85] 0 0 0.0762 0.5 0
1SC set 2 (4.8) [179] 2 (1.9) [179] 0 (-3) [179] 0.179

RB
2SC set 5.5 (6.1) [85] 9 (12) [85] 3.5 (5.9) [85] 0 2 0.0002 3 0
1SC set 6 (6.8) [179] 7 (7.7) [179] 0 (0.9) [179] 0

a Bold text shows significance at the 95% confidence level.b SC, starting compound.c OC, optimized compound.d PC, property change.e N, number of
data points.f p value from 1-sample Wilcoxon signed rank test of the median.g Mann-Whitney point estimate for the difference in the population medians.
h Mann-Whitney p value.
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for the starting compounds, so the higher PSA for the 2SC set
of optimized compounds was due to a higher increase during
optimization of 26. There was no statistically significant increase
in PSA for the 1SC set.

The trends observed for the number of acceptors mirrored
those seen for PSA, with the number being higher for the
optimized compounds from the 2SC set, median of 6. This was
due to a higher degree of increase during optimization. The
starting compounds in the 1SC and 2SC sets had the same
number of acceptors, with a median of 4.

The optimized compounds from both the 1SC and 2SC sets
had a median of 2 HBDs. There was no increase in the number
of donors for the 1SC set, whereas there was an increase of 0.5
for the 2SC set.

The optimized compounds from the 2SC set were more
flexible than those from the 1SC set, with a median number of
9 and 7 RBs, respectively. There was no statistically significant
change in flexibility for the 1SC set during optimization, but
for the 2SC set there was a large increase from 5.5 to 9 rotatable
bonds. As with MW and cLogP, the starting compounds from
the 2SC set had a lower number of RBs, but it was the large
increase during optimization that reversed the order of the
subsets for the optimized compounds.

Discussion
(A) Target Family Based Property Analysis.It is clear from

the data that we present in this paper that there are significant
differences between the various target families studied with
respect to the properties of their optimized DMLs. The target
family that consistently gave the highest values was the peptide
GPCRs. For example, the optimized compounds for peptide
GPCRs had a median MW of 636 and a median cLogP of 5.1,
figures in excess of those defined in the “rule-of-5” for
druglikeness.5 At the other extreme, the transporter inhibitors
had an exceptionally low median MW of 307. The optimized
compounds for monoamine GPCRs, oxidases, and GPCR/
transporters were the most druglike after the transporters.

The position of peptide GPCRs as the single most challenging
family in terms of obtaining druglike properties is consistent
with many of the published examples having been reported to
possess poor oral bioavailability. On rare occasions, reducing
the size and complexity of the lead compounds was possible in
order to achieve acceptable pharmacokinetics while retaining
or increasing potency and selectivity. For example, the structures
of complex dual NK1/NK2 antagonists and AT1/ETA antagonists
were simplified by Murugesan et al.12 and Mah et al.,13

respectively, to give derivatives that possessed good oral
bioavailability. In many other examples, the combination of a
desirable in vitro profile with the pharmacokinetic profile
required for the development of an oral drug was not achievable,
but nevertheless, these ligands may represent useful pharma-
cological tools. Indeed, an important goal for future research
in this field, particularly in academic institutions, will be to
develop high-quality pharmacological tools to explore the
potential therapeutic value of novel target combinations. Here,
less attention can be paid to oral exposure and overall devel-
opability criteria. More important will be the wider selectivity
profile of these pharmacological tools.

The conclusions of this paper are relevant only for the
discovery of oral drugs. The use of alternative routes of
administration, such as intravenous and transdermal, is ap-
plicable for some DML applications. High MW DMLs (con-
jugates), containing a linker group separating the frameworks
of the two selective ligands, have been successfully employed
as intravenously administered drugs.14

The rank order of the target families, shown in Figure 3, bears
a close resemblance to that reported previously for a diverse
set of preclinical compounds, the majority of which were
designed to possess high selectivity for a single target.11

However, the average property values for the DMLs are typically
higher than those reported for preclinical compounds in general.
Given the need to satisfy two or more sets of stringent
pharmacophoric requirements, might we expect that DMLs
would be larger and more structurally complex than ligands that
are selective for a single target?

The goal of a medicinal chemist working on a DML project
is to find a molecular framework or “anchoring group” that
satisfies a basic pharmacophoric requirement of each target. By
modification of this basic template, a common finding is that
some groups are crucial for activity at one of the targets but
are merely tolerated by the other target(s). It is conceivable that
such “tolerated regions” may be buried deep within the active
site of one target but exposed to solvent in the other. DMLs
containing groups that are merely tolerated by one of the targets
without contributing much binding energy are likely to be larger
and less efficient than selective ligands. It might be expected
that designing druglike DMLs with high efficiency would be
most feasible for targets that possess similar binding sites where
there is less need for functionality that is only relevant for
binding to one of the targets. Where the targets are fundamen-
tally different, it may be very difficult indeed to integrate the
pharmacophoric requirements of both binding sites into a small,
compact molecule.

The large difference in the median MWs between the DML
and SCOPE ligands binding to peptide GPCRs is notable (Table
1). This can be explained, at least partly, by the fact that the
SCOPE set contained a larger number of small opioid agonists
that served to lower the median MW of the optimized
compounds.11 However, the difference could also be partially
explained by the binding sites of individual peptide GPCRs
being more diffuse and more dissimilar to each other compared
to members of some other families. The degree of overlap of
the frameworks, and underlying pharmacophores, that can
routinely be achieved might be lower than for other families,
and the resulting presence of substantial “tolerated regions”
would result in lower binding efficiency.

In contrast, for the oxidases, proteases, and transporters, the
optimized compounds were of similar size for the SCOPE and
DML data sets (Table 1). For these three families, this may be
because the binding sites for the target combinations in our DML
data set are more conserved. Possibly the DMLs for these
families contain anchoring groups that contribute a large
proportion of the binding energy, thereby allowing the size of
the remainder of the molecule to be minimized while still
retaining acceptable potency. For many of the protease inhibi-
tors, this conserved anchoring group is a warhead that binds
zinc as in omapatrilat1 (Figure 4). An additional explanation
may be that the availability of biostructural and mechanistic
information for proteases enables medicinal chemists to merge
the frameworks of selective ligands with high efficiency. In the
case of the transporters, the binding sites are also likely to be
highly similar by virtue of binding similar monoamine neu-
rotransmitters. It is thought that the conserved anchoring group
is an aspartate residue in the first transmembrane domain of
monoamine transporters that is involved in binding the endog-
enous substrates and presumably also inhibitors such as dulox-
etine2 (Figure 4).15

While the property values for the GPCR/transporter ligands
were typically higher than those for transporters alone, they were
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still in the druglike range being similar to those for monoamine
GPCRs. Most of these ligands were dual monoamine transporter
inhibitors/monoamine GPCR antagonists. Similarities in the
antagonist binding sites in the transmembrane regions of
monoamine GPCRs and transporters will likely facilitate the
discovery of druglike ligands.15 The property values for the
GPCR/oxidase ligands were consistently higher than those for
the GPCR/transporter ligands, and this almost certainly reflects
lower similarity of the GPCR and enzyme active sites. The
significantly larger size and complexity of the kinase DMLs
compared to SCOPE were somewhat surprising given that the
binding sites share a common ligand (ATP). A caveat here is
that the kinase DML data set was relatively small and more
examples will be required to establish if this trend is real. For
the nuclear receptors, there were also large differences between
the DML and SCOPE property medians, but these differences
should be treated with particular caution because all the DMLs
in the data set came from a single subclass, the PPAR receptors.

Previously we reported that the principal influence on the
druglikeness of the SCOPE optimized compounds was the
properties of the starting compounds because the degree of
change in those properties during optimization was rather
consistent across the different target families.11 In the case of
the DMLs, there were profound differences between the target
families with respect to the degree of increase of these properties
during optimization. As a result, the properties of the optimized
compounds were influenced to a much greater extent by the
increases in properties during optimization. For MW, the
increases were generally higher for the DMLs compared to the
SCOPE ligands, and these larger increases were predominantly
responsible for the larger size of the ligands of the DMLs. For
those families where the median MW of the optimized
compounds was similar for the SCOPE and DML sets, oxidases,
proteases, and transporters, this was due to the change during
optimization also being similar. Although there were some
exceptions, there was a trend for those target families with the
lowest property values for the starting compounds (transporters,
monoamine GPCRs, oxidases, and GPCR/transporters) to also
have the lowest increases during optimization. On the other
hand, the peptide GPCR family usually had both the highest
property values for the starting compounds and the highest
increases during optimization. For example, the median MW
increase was+72 for the peptide GPCR ligands but only+24
for the oxidase ligands.

For the peptide GPCRs, the starting compounds were
considerably larger than their SCOPE equivalents. Again, the
larger number of relatively low MW opioid agonists in the
SCOPE set is likely to be a contributory factor here.11

The increases in lipophilicity during optimization were also
generally higher for DMLs compared to the SCOPE ligands.

One example of the strong influence of the change during
optimization is the high cLogP increase (+1.35) for monoamine
GPCR ligands. Unusually the monoamine GPCR ligands also
showed a decrease in the number of HBDs during optimization.
These two observations may be explained by the way in which
the frameworks from two monoamine GPCR ligands are often
merged with the overlapping of a common secondary or tertiary
amine and retention in the optimized compound of lipophilic
groups from both starting compounds as in compound8 (Figure
5).

(B) Lead Discovery Strategy-Based Property Analysis.We
have found strong evidence that the discovery strategy exerts
an even more profound influence than the target family on the
changes in properties during optimization and consequently on
the properties of the optimized DMLs. The 2SC strategy, which
comprises the merging of two selective ligands, results in dual
ligands that are larger and more complex than those resulting
from a 1SC strategy (Figure 2). This effect is predominantly
the result of larger increases in the physicochemical properties
during optimization, caused by the fact that a high degree of
merger is often difficult to achieve. For the 1SC strategy, the
starting compound was typically obtained by focused or random
screening and multitarget activity was usually already present
to some extent. In such cases, optimization then proceeded along
the lines of “balancing” the activities by adding modestly sized
groups or modifying the existing functionality. This typically
had less of an effect on the overall size and physicochemical
properties of the molecule than the merging of two frameworks.

This Achilles’ heel of the 2SC framework combination
strategy is illustrated by the example in Figure 5 wherein the
framework of a selective gastrin ligand3 was combined with
that of a histamine H2 ligand 4.16 Compound5 is a classic
example of a “fused” DML (Figure 2) because the degree of
overlap that was possible was just a single carbon atom. The
incompatibility of the hydrophobic gastrin pharmacophore with
the hydrophilic H2 pharmacophore produces “tolerated regions”
that are only relevant for binding at one of the targets, having
the effect of lowering the overall efficiency of binding and
compromising oral absorption. If the 2SC framework combina-
tion strategy is to be successfully employed to produce druglike
multiple ligands (MW< 500), it is imperative to start from
small fragments (MW< 250) if the degree of overlap that is
expected is very low or to use “leadlike” (MW< 400) starting
compounds if the expected overlap is considerably higher.
Interestingly, the properties of the starting compounds from the
2SC set tended to be lower than those for the one starting
compound and SCOPE sets. Perhaps this indicates a tendency
for medicinal chemists to preselect the smallest starting com-
pounds, knowing that large increases in MW and flexibility will
inevitably result from the 2SC framework combination approach.

A successful application of the 2SC approach was the
combination of the frameworks of the 5HT2 ligand 6 with
dopamine7.17 Again, the degree of overlap of the frameworks
was just a single atom, but this example of a fused DML8 was
much smaller by virtue of the very low MW of the two starting
compounds. It may be possible to use somewhat larger frag-
ments, as with the merger of the 5HT1A and SERT ligands9
and10 to give compound11, providing the frameworks can be
highly merged.18 This requires high similarity in the pharma-
cophores of the two targets, as is the case here for the 5HT1A

receptor and the serotonin transporter, which share the same
endogenous ligand. In this case, the sulfonamide group could
be deleted, which helped to further reduce the MW. Since the
overall goal of the 2SC strategy is to reduce the property values

Figure 4. Structures of DMLs for proteases and transporters containing
conserved anchoring groups: ACE, angiotensin converting enzyme;
NEP, neutral endopeptidase; SERT, serotonin transporter; NET, nor-
epinethrine transporter; DAT, dopamine transporter.
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for a DML relative to the sum of the property values for the
starting compounds, this can best be achieved by using a
combination of deletions and framework combination. Since the
SAR may not transfer directly from the selective ligands to the
DML, it pays to keep an open mind during optimization and
explore afresh the effect of deleting groups that were previously
found to be essential in the selective ligands.

Since the physicochemical properties of DMLs are controlled
by the dual influences of the target family and the lead discovery
strategy, it is not surprising that the highest property values of
all were found for DMLs for peptide GPCRs that were derived
via a 2SC framework combination strategy. In this case, the
median MW and PSA values were exceptionally high, 651 and
97, respectively. The 2SC framework combination strategy will
be exceptionally difficult to execute for peptide GPCRs, and it
is telling that there are no examples in our database of optimized
compounds with MWs below 500. In one example, the
framework of an AT1 selective ligand12 was combined with
that of a ETA ligand 13 with a good degree of overlap of the
biaryl core being achieved in14.19 Even when this high degree
of integration of the frameworks was possible by cleverly
exploiting a privileged substructure, the MW remains stubbornly
above 500 because of the typically high MWs of the starting
compounds. This series went on to deliver ligands with good
oral bioavailability, indicating that with perseverance and skill
even difficult families such as peptide GPCRs can sometimes

be addressed with a 2SC approach. Nonetheless, given the lower
median MW for the 1SC subset, a screening-based approach
that attempts to directly deliver a hit with multiple activity, even
if the initial activity is weak, might prove to be more fruitful
for peptide GPCRs than the 2SC framework combination
strategy. At the other end of the spectrum, the ligands for
transporters, monoamine GPCRs, and oxidases generally possess
favorable physicochemical properties and the feasibility of such
targets for DML projects using a variety of lead discovery
strategies will be relatively high.

The 2SC strategy can readily be applied to the discovery of
pharmacological tools for validating novel target combinations
and for the production of injectable drugs. For discovering
ligands that bind more than two targets, screening is currently
the only viable lead generation strategy.

Looking to the future, more sophisticated knowledge-driven
design strategies and computational tools are clearly needed for
tackling the difficult families. Whereas classical framework
combination can lead to the presence of unnecessary “tolerated
regions” and low binding efficiency, combination carried out
at the level of the underlying pharmacophores has the potential
to produce druglike DMLs with structures significantly different
from those of any of the known selective ligands (scaffold
hopping). Knowledge of the relationships between the underly-
ing pharmacophores for the different targets will help maximize

Figure 5. Structures and molecular weights of four optimized DMLs derived via a “framework combination” approach and the starting compounds
from which they were derived. Conserved atoms are shown in magenta. The size of the optimized compound is determined by the size of the
starting compounds, the degree of merger of the frameworks that can be achieved, and the potential to delete nonessential peripheral groups.
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ligand efficiency in terms of binding energy per unit of
molecular weight or lipophilicity.

Conclusion

Many factors contribute to the chance of success for medicinal
chemists when confronted with the challenge of designing
ligands that seek to address more than one target.1 Particularly
important among these factors are physicochemical properties
that relate to molecular size and complexity, given the critical
relationship of such properties to the developability of orally
administered drugs.

In this paper, we have found that the influence of the target
family on the physicochemical properties of DMLs is broadly
similar to that reported previously for preclinical compounds
in general, with peptide GPCR ligands having unusually high
values and transporter ligands unusually low values.11 However,
DMLs are typically larger and more complex than preclinical
ligands, and one explanation for this is the popularity of a lead
discovery strategy (2SC) whereby the molecular frameworks
from two selective ligands are combined. Given that the selective
ligands were already druglike and the extent of the overlap of
the frameworks that could be achieved was often low, this
process resulted in large property increases that often compro-
mised oral bioavailability. Nonetheless, the 2SC approach is a
conceptually elegant knowledge-driven strategy that effectively
uses SAR knowledge derived from selective ligand projects.
Furthermore, there are successful examples of oral drugs having
been discovered by this strategy reaching the market, such as
ziprasidone.17 To achieve an orally active DML, it is important
that the degree of framework overlap is maximized and the size
and complexity of the selective ligands are minimized. These
goals will typically be more feasible for targets with simple
endogenous ligands and conserved binding sites, such as
monoamine GPCRs and transporters.

Given the fact that DML projects usually demand a larger
investment of resources than single target projects, an early
assessment of the risk versus the potential benefit of a DML
approach is essential. Where the targets in a combination are
highly dissimilar, even if it is possible to achieve the desired
profile, there is a higher risk that the resulting ligands will
contain large “tolerated regions” and possess low binding
efficiency. Since the median MW for the 1SC strategy was lower
than for the 2SC strategy, focused or diversity-based screening
approach may provide a route to smaller and less complex leads
for difficult target combinations. New lead discovery strategies
will certainly be required in the years ahead if this area of
designing multiple ligands is to fulfill its full therapeutic
potential.

Methods

The database of 281 multiple ligands was compiled by keyword
searches of four medicinal chemistry journals (Bioorg. Med. Chem.,
Bioorg. Med. Chem. Lett., Eur. J. Med. Chem., andJ. Med. Chem.)
published during the period 1990-2005. Of the 281 ligands, 257
were designed to be active at 2 targets, 23 ligands were designed
for 3 targets, and 1 involved 4 targets. Of the 264 optimizations
recorded in the database, 179 started from a single starting
compound and 85 started from 2 starting compounds. The abstrac-
tion policy for the database was to select as the optimized compound
the compound that was subjected to the most rigorous testing
regime, and it was not necessarily the most potent compound in
the primary in vitro assays.

Definitions of the methods used for calculating the numbers of
hydrogen bonding groups (HBA and HBD) and rotatable bonds
(RB) are provided in Supporting Information. Polar surface area
(PSA) was calculated according to a published method.20

For some of the target family subsets, the property distributions
for the compounds were not normally distributed. For that reason,
more emphasis in the analysis and interpretation is placed upon
the median values rather than the mean value, and the data sets
were analyzed using nonparametric rank statistical methods. The
Wilcoxon signed rank test was used to examine the significance of
the changes in the properties during optimization, and the Mann-
Whitney rank test was used to explore the significance of the
differences in properties between the target family subsets and
between the discovery strategy subsets. Statistical significance was
defined asp < 0.05 for all cross-comparisons in this paper except
in the case of the target family clustering (Figure 3) wherep < 0.1
was used.9

Supporting Information Available: Tables of differences in
the median property values and relatedp values for the target
families; definition of hydrogen bond donors and acceptor and
rotatable bonds. This material is available free of charge via the
Internet at http://pubs.acs.org.
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